Application of clay as a sustainable building material. Characteristics of ancient clay plasters - pilot results
DOI:
https://doi.org/10.33919/ansd.23.8.5Keywords:
clay (earthen) plaster, sustainable development, eco-friendly building materialsAbstract
Clay is a popular traditional material that has been used for the construction of building materials and household objects since time immemorial. Due to its plastic property and capacity to regulate humidity, it was often used in the form of clay plasters. At present, the building sector has become a serious contributor to climate change, thus triggering a need for the use of more sustainable and eco-friendly materials. This paper aims to analyze the characteristics of ancient clay plasters from the Roman age and define their production technology. The reason for this study is that the ancient production recipes of clay plasters are the base for the modern ones. The analytical methods that were used in this research include X-ray fluorescence (XRF) analysis, Powder X-Ray diffraction (PXRD) analysis, Fourier transformed infrared (FTIR) measurements and thermal analysis. It was established that two types of raw clay were used for the clay plasters preparation, calcareous and non-calcareous, and both match the rock types on the surface around the archeological sites, meaning that the clay was most likely of local origin. There are no signs of burning on the samples; however there is a high probability that they were intentionally treated thermally within a similar temperature range. The acquired results suggest a good environmental knowledge throughout the Roman era and an ability to work well with traditional materials, but with different properties. The results are also of practical value, since they can be applied in the creation of modern plasters that can be used both in modern buildings and for conservation and restoration purposes.
References
Aras, A., S. Kiliç, 2017. The mineralogy and firing behaviour of pottery clays of the Lake Van region, eastern Turkey. Clay Minerals, 52 (4), 453-468. https://doi.org/10.1180/claymin.2017.052.4.04
Badica, P., A. Alexandru‑ Dinu, M. A. Grigoroscuta, M. Burdusel, G. V.Aldica, V. Sandu, C. Bartha, S. Polosan, A. Galatanu, V. Kuncser, M. Enculescu, C. Locovei, I. Porosnicu, I.Tiseanu, M. Ferbinteanu, I. Savulescu, M. Negru, N. D. Batalu, 2022. Mud and burnt
Roman bricks from Romula. Scientifc Reports, 12:15864. https://doi.org/10.1038/s41598-022-19427-7
Bayazit, M., I. Işık, A. Issi, E. Genç, 2014. Spectroscopic and thermal techniques for the characterization of the first millennium AD potteries from Kuriki-Turkey. Ceramics International, 40 (9-B), 14769-14779. http://dx.doi.org/10.1016/j.ceramint.2014.06.068.
Bitay, E., Kacsó I, Tănăselia C, Toloman D, Borodi G, Pánczél S-P, Kisfaludi-Bak Z, Veress E., 2020. Spectroscopic Characterization of Iron Slags from the Archaeological Sites of Brâncoveneşti, Călugăreni and Vătava Located on the Mureş County (Romania) Sector of the Roman Limes. Applied Sciences, 10 (15):5373. https://doi.org/10.3390/app10155373
Boyanov, I., 2014. Discoduraterae and emporia in Roman Thrace. Avalon. 232 pp. Boyanov, I., A. Goranov, J. Shilyafova, M. Ruseva, 1991. Geolojki karti na Bulgaria, M 1:100000, Karten list Dimitrovgrad. [Geological maps of Bulgaria, M 1:100000, Map sheet Dimitrovgrad].
Boyanov, I., J. Shilyafova, A. Goranov, M. Ruseva, T. Nenov, 1993. Geolojki karti na Bulgaria, M 1:100000, Karten list Chirpan. [Geological maps of Bulgaria, M 1:100000, Map sheet Chirpan].
Böke, H., S. Akkurt, B. İpekoğlu, E. Uğurlu, 2006. Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cem Concr Res, 36 (6), 1115-1122. https://doi.org/10.1016/j.cemconres.2006.03.011
Brown, M. E., P. K. Gallacher (Eds.), 2003. Handbook of Thermal analysis and Calorimetry. Vol. 2. Applications to inorganic and miscellaneous materials. Elsevier. 905.
Chamley, H., 1989. Clay Sedimentology. Springer-Verlag Berlin Heidelberg. 623. https://doi.org/10.1007/978-3-642-85916-8
Chukanov, N. V., 2014. Infrared spectra of mineral species: Extended library. Springer Geochemistry/Mineralogy, Springer Dordrecht Heidelberg New York London, ISBN: 978-94-007-7127-7, 978-94-007-7128-4.
Chukanov, N. V., A. D. Chervonnyi, 2016. Infrared Spectroscopy of Minerals and Related Compounds. Springer New York Dordrecht London. https://doi.org/10.1007/978-3-319-25349-7
Dumanov, B., 2005. Spasitelni arheologicheski prouchvaniya na obekt № 13а (kusnoantichno selishte) pri s. Malko Tranovo, obshtina Chirpan, po traseto na AM “Trakiya” – LOT 1. [Archaeological rescue research of site № 13а (late antique settlement) near the village Malko Tranovo, Chirpan municipality, along the route of “Trakiya” highway – LOT 1] Arheologicheski razkopki prez 2004. [Archaeological excavations in 2004], 243-244.
El Ouahabi, M., L. Daoudi, F. Hatert, N. Fagel, 2015. Modified Mineral Phases During Clay Ceramic Firing. Clays Clay Miner., 63, 404-413. https://doi.org/10.1346/CCMN.2015.0630506
Emami, M., Y. Sakali, Ch. Pritzel, R. Trettin, 2016. Deep inside the ceramic texture: A microscopic–chemical approach to the phase transition via partial-sintering processes in ancient ceramic matrices. Journal of Microscopy and Ultrastructure, 4, 11-19. http://dx.doi.org/10.1016/j.jmau.2015.08.003.
Földvári, M., 2011. Handbook of the thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary. Budapest. https://doi.org/10.1556/ceugeol.56.2013.4.6
Emiroğlu, M., A. Yalama, Y. Erdoğdu, 2015. Performance of ready-mixed clay plasters produced with different clay/sand ratios. Journal of Applied Clay Science, 115, 221-229. https://doi.org/10.1016/j.clay.2015.08.005
Goffer, Z., 2007. Archaeological chemistry. John Wiley & Sons, Inc., Hoboken, New Jersey. 623.
Grim, R. E., W. F. Bradley, 1940. Investigation of the effect of heat on the clay minerals illite and montmorillonite. Journal of the American Ceramic Society, 23 (8), 242-248. https://doi.org/10.1111/j.1151-2916.1940.tb14263.x
Hatakeyama, T., Zk. Liu, 1998. Handbook of thermal analysis. Sussex, England, John Wiley & Sons Ltd. Pp 452.
Imman, S., P. Khongchamnan, W. Wanmolee, N. Laosiripojana, T. Kreetachat, Ch. Akulthaew, Ch. Chokejaroenrat, N. Suriyachai, 2021. Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process. RSC Advances, 43 (11). https://doi.org/10.1039/D1RA03237B
Jozanikohan, G., M. Abarghooei, 2022. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. Journal of Petroleum Exploration and Production Technology. https://doi.org/10.1007/s13202-021-01449-y
Kotryová, B., J. Ondruška, I. Štubňa, P. Bačík, 2016. Thermoanalytical investigation of ancient pottery. AIP Conference Proceedings, 1752, 040016. https://doi.org/10.1063/1.4955247
Kornilov, A. V., 2005. Reasons for the different effects of calcareous clays on strength properties of ceramics. Glass Ceram, 62, 391–393. https://doi.org/10.1007/s10717-006-0017-9.
La Noce, M., A. Lo Faro, G. Sciuto, 2021. Clay-Based Products Sustainable Development: Some Applications. Sustainability, 13, 1364. https://doi.org/10.3390/su13031364
Laufek, F., I. Hanusová, J. Svoboda, R. Vašíček, J. Najser, M. Koubová, M. Čurda, F. Pticen, L. Vaculíková, H. Sun, D. Mašín, 2021. Mineralogical, Geochemical and Geotechnical Study of BCV 2017 Bentonite -The Initial State and the State following Thermal Treatment at 200°C. Minerals, 11(8), 871. https://doi.org/10.3390/min11080871
Lee, W.E., G. P. Souza, C. J. McConville, T. Tarvornpanich, Y. Iqbal, 2008. Mullite formation in clays and clay-derived vitreous ceramics. Journal of the European Ceramic Society, 28, 465–471. https://doi.org/10.1016/j.jeurceramsoc.2007.03.009.
Lišková, B., P. Jelínek, M. Ostrý, 2016. Impact of hydrophobic additives on properties of clay plaster. Applied Mechanics and Materials, 824, 92-99. https://doi.org/10.4028/www.scientific.net/amm.824.92
Ma, X., G. Wei, C. Grifa, Y. Kang, H. Khanjian, I. Kakoulli, 2018. Multi-analytical Studies of Archaeological Chinese Earthen Plasters: The Inner Wall of the Longhu Hall (Yuzhen Palace, Ancient Building Complex, Wudang Mountains, China). Archaeometry, 60 (1), 1-18. https://doi.org/10.1111/arcm.12318
Marsh, A., A. Heath, P. Patureau, M. Evernden, P. Walker, 2018. Alkali activation behavior of un-calcined montmorillonite and illite clay minerals. Applied Clay Science, 166, 250-261, https://doi.org/10.1016/j.clay.2018.09.011
Melià, P., G. Ruggieri, S. Sabbadini, G. Dotelli, 2014. Environmental impacts of natural and conventional building materials: a case study on earth plasters. Journal of Cleaner Production, 80, 179-186, https://doi.org/10.1016/j.jclepro.2014.05.073.
Meyers, K. S., R. F. Speyer, 2003. Thermal analysis of clays. In: Brown ME, Gallacher PK, editors. Handbook of Thermal analysis and Calorimetry. 2. Applications to inorganic and miscellaneous materials. Amsterdam: Elsevier, pp 268-289.
Moropoulou, A., A. Bakolas, K. Bisbikou, 1995. Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochimica Acta, 2570, 743-753. https://doi.org/10.1016/0040-6031(95)02571-5
Muller, F., V. Drits, A. Plançon, J-L. Robert, 2000. Structural Transformation of 2:1 Dioctahedral Layer Silicates during Dehydroxylation-Rehydroxylation Reactions. Clays Clay Miner, 48, 572–585. https://doi.org/10.1346/CCMN.2000.0480510
Palanivel, R., U. Rajesh Kumar, 2011. Thermal and spectroscopic analysis of ancient potteries. Romanian Journal of Physics, 56 (1-2), 195-208. ISSN 1221-146X. PDF (Powder Diffraction File), 2001. ICDD, Newtown Square, PA
Pei, Z, M. Lin, Y. Liu, S. Lei, 2018. Dissolution Behaviors of Trace Muscovite during Pressure Leaching of Hydrothermal Vein Quartz Using H2SO4 and NH4Cl as Leaching Agents. Minerals. https://doi.org/10.3390/min8020060
Ponomar, V. P., 2018. Thermomagnetic properties of the goethite transformation during high-temperature treatment. Minerals Engineering, 127, 143-152. https://doi.org/10.1016/j.mineng.2018.08.016.
Rao, H., Y. Yang, X. Hu, J. Yu, H. Jiang, 2017. Identification of an Ancient Birch Bark Quiver from a Tang Dynasty (A.D. 618–907) Tomb in Xinjiang, Northwest China. Econ Bot, 71, 32-44. https://doi.org/10.1007/s12231-017-9369-z
Ravisankar, R., S. Kiruba, P. Eswaran, G. Senthilkumar, A. Chandrasekaran, 2010. Mineralogical Characterization Studies of Ancient Potteries of Tamilnadu, India by FT-IR Spectroscopic Technique. Journal of Chemistry, 7, 643218, https://doi.org/10.1155/2010/643218
Silva, A., H. R. Wenk, P. J. M. Monteiro, 2005. Comparative investigation of mortars from Roman Colosseum and cistern. Thermochimica Acta, 438 (1-2), 35-40. https://doi.org/10.1016/j.tca.2005.03.003
Stanienda, K.J., 2016. Carbonate phases rich in magnesium in the Triassic limestones of the eastern part of the Germanic Basin. Carbonates Evaporites, 31, 387-405, https://doi.org/10.1007/s13146-016-0297-2
Singha, M., L. Singh, 2016. Vibrational spectroscopic study of muscovite and biotite layered phyllosilicates. Indian Journal of Pure & Applied Physics, 54, 116-122.
Theophanides, T. (Ed.), 2012. Infrared Spectroscopy - Materials Science, Engineering and Technology. London, United Kingdom, IntechOpen. https://doi.org/10.5772/2055
Theodosoglou, E., A. Koroneos, T. Soldatos, T. Zorba, K. M. Paraskevopoulos, 2010. Bulletin of the Geological Society of Greece, Proceedings of the 12th International Congress Patras, May, 2010. XLIII, No 5, 2752 – 2761.
Trindade, M. J., M. I. Dias, J. Coroado, F. Rocha, 2009. Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42 (3-4), 345-355. https://doi.org/10.1016/j.clay.2008.02.008
Velosa, A. L., J. Coroado, M. R. Veiga, F. Rocha, 2007. Characterisation of roman mortars from Conímbriga with respect to their repair. Mater Charact., 58 (11-12), 1208-1216. https://doi.org/10.1016/j.matchar.2007.06.017
Yan, B., S. Liu, M. L. Chastain, Sh. Yang, J. Chen, 2021. A new FTIR method for estimating the firing temperature of ceramic bronze-casting moulds from early China. Sci Rep., 11, 3316. https://doi.org/10.1038/s41598-021-82806-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Katerina Mihaylova, Ventsislava Ivanova, Bilyana Kostova

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.