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Abstract
Non-textual document elements such as charts, diagrams, algorithms and ta-

bles play an important role to present key information in scientific documents. 
Recent advances in information retrieval systems tap this information to answer 
more complex user queries by mining text pertaining to non-textual document 
elements from full text. Algorithms are critically important in computer science. 
Researchers are working on existing algorithms to improve them for critical ap-
plication. Moreover, new algorithms for unsolved and newly faced problems are 
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under development. These enhanced and new algorithms are mostly published in 
scholarly documents. The complexity of these algorithms is also discussed in the 
same document by the authors. Complexity of an algorithm is also an important 
factor for information retrieval (IR) systems. In this paper, we mine the relevant 
complexities of algorithms from full text document by comparing the metadata of 
the algorithm, such as caption and function name, with the context of the paragraph 
in which complexity related discussion is made by the authors. Using the dataset 
of 256 documents downloaded from CiteSeerX repository, we manually annotate 
417 links between algorithms and their complexities. Further, we apply our novel 
rule-based approach that identifies the desired links with 81% precision, 75% recall, 
78% F1-score and 65% accuracy. Overall, our method of identifying the links has 
potential to improve information retrieval systems that tap the advancements of full 
text and more specifically non-textual document elements. 

Keywords: algorithm search, algorithm complexity, information retrieval, 
non-textual document elements (NTDE)

1. Introduction
Academic literature is growing exponentially in last two decades and 

flourishing in an unprecedented pace, which has brought new challenges to 
information retrieval research (Khan, Liu, Shakil and Alam, 2017). Non-Tex-
tual Document Elements (NTDEs) such as figures, charts, pseudo-codes, 
and tables are very common in scientific documents, and they are vital ele-
ments for communicating the key information. These elements are sometime 
placed at the start or at the end of the page instead of following the flow of 
document text, and the discussion about these elements may or may not be 
on the same page, the discussion about these elements mostly has the ref-
erence of the caption of the entity. Sometimes, these elements are referred 
multiple times in different sections of the scholarly document.

Algorithms are well-defined methodologies to solve the problems and 
they are important in every field of science and technology. There are many 
features of an algorithm such as correctness, elegance, efficiency and scal-
ability. Efficiency of an algorithm is defined as complexity of algorithm, and 
it is based on time and space. The main aim of estimating the complexity 
of algorithms is to categorize them according to their efficiency. Complexity 
of algorithm is described asymptotically using three types of notations as: 
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(1) O-notation (big oh notation) used for upper bound, (2) Ω-notation (big 
omega notation) used for lower bound and (3) Θ-notation (big theta nota-
tion) used for tight bound. We have used these asymptotic notations to iden-
tify the complexity lines in full text scholarly documents.

Scholarly publications host a tremendous number of high-quality algo-
rithms, developed by professionals and researchers. Normally, when new al-
gorithms are published, or existing algorithms are enhanced, their time and/
or space complexities are also discussed in the same document by the au-
thors. Most of the time authors are not working on algorithms or not trying 
to improve existing ones, they are publishing the algorithms that they have 
used in their research, and sometimes they do not discuss the complexity of 
the algorithm because it is well-known, or because they do not focus on it.

The complexities of an algorithm (for time and space) can be identified 
from the document by analyzing the context of the paragraph in which the 
complexity is mentioned, and the metadata (such as the algorithm caption 
and the algorithm label) of the algorithm extracted from the same document.

Our Research Contributions. In this research, our contributions are as 
follows:

•	 Identification of algorithmic complexity lines in full text document 
using regular expressions and synopsis generation for each complex-
ity line.

•	 Algorithmic metadata compilation of algorithms – normally, there 
are multiple algorithms in a scholarly document and the metadata of 
each algorithm are compiled separately.

•	 Linking complexity related textual lines to algorithmic metadata us-
ing a novel rule-based approach.

In Section 2, we have discussed related work. In Section 3, a dataset is 
described, and a system model of our research is discussed in Section 4. Ex-
periments and their results are given in Section 5 and Section 6 concludes the 
research with future suggestions.

2. Literature Review аnd Related Work
Many algorithms are being published in research articles on a monthly 

and yearly basis (Bhatia, Tuarob, Mitra and Giles, 2011). Hundreds of articles 
are published and/or added to digital archives on a monthly and yearly basis 
and the arXiv1 has crossed the boundary of 1.3M full text publications, which 
shows the importance of this research.
1 https://arxiv.org/stats/monthly_submissions.
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2.1 Algorithmic Representations
Normally, algorithms are explained in pseudo-code (PC) (as shown in 

Figure 1), in natural language as algorithmic-procedure (AP) (as shown in 
Figure 2), in mathematical formatting (as shown in Figure 3) or in coding 
style (as shown in Figure 4) (Tuarob, Bhatia, Mitra and Giles, 2016). Algo-
rithms can be implemented in any programming language. There are a num-
ber of document elements in a scholarly document such as figures (Siegel, 
Horvitz, Levin, Divvala and Farhadi, 2016), tables (Liu, Bai, Mitra and Giles, 
2007), forms (Coüasnon and Lemaitre, 2014), algorithms (Bhatia, Mitra and 
Giles, 2010) mathematical expressions (Baker, Sexton, Sorge and Suzuki, 
2011) (Zanibbi and Blostein, 2012), programing codes and a number of tex-
tual sections such as abstract, acknowledgments (Khabsa, Treeratpituk and 
Giles, 2012), collaborations (Chen, Gou, Zhang and Giles, 2011), methodol-
ogy, results (e.g., precision, recall, or F-measure), conclusion and references. 
Algorithms are normally given as figures (Bhatia and Mitra, 2012), in math-
ematical formatting, in coding style, or sparse boxes like other document 
elements (Tuarob, Bhatia, Mitra and Giles, 2013).

2.2   Information Retrieval Systems and Algorithms
Information retrieval (IR) is a technique for searching required or rele-

vant information form exiting data (Wang, 2009). There are several search 
engines to search for academic literature such as Google Scholar2, Micro-
soft Academic3, PloS One4, Semantic Scholar5, Science Direct6, ACM Digital 
Library7 and CiteSeerX8, an academic document search (Wu, et al., 2015). 
There are also some search engines that are optimized for a specific area 
of science such as BioText Search Engine9 which is optimized for bioinfor-
matics related search (Hearst, et al., 2007). There are some other IR systems 
such as TableSeer for searching tables in digital libraries (Liu, Bai, Mitra and 

2 https://scholar.google.com/.
3 https://academic.microsoft.com/.
4 http://journals.plos.org/plosone/.
5 https://www.semanticscholar.org.
6 https://www.sciencedirect.com/.
7 https://dl.acm.org.
8 http://citeseerx.ist.psu.edu/index.
9 http://biosearch.berkeley.edu/
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Giles, 2007), AckSeer for acknowledgments (Khabsa, Treeratpituk and Giles, 
2012), CollabSeer for collaborations (Chen, Gou, Zhang and Giles, 2011), 
FigureSeer for figures (Siegel, Horvitz, Levin, Divvala and Farhadi, 2016) 
and AlgorithmSeer for searching algorithms in scholarly big data (Tuarob, 
Bhatia, Mitra and Giles, 2016). 

Efficient algorithms are critically important and sometime crucial for cer-
tain software projects. Nowadays, there are a number of source code search 
engines for software developers and researchers to find relevant source code 
according to their requirements. Information retrieval systems for algo-
rithms in scholarly documents are improving in past recent years to fulfill 
the search queries by providing relevant information such as Sourerer (Ba-
jracharya, Ossher and Lopes, 2009) and Exemplar (EXEcutable exaMPLes 
ARchive) (McMillan, Grechanik, Poshyvanyk, Fu and Xie, 2012).

In recent years, a few attempts have been made to extract non textual 
document elements such as figures, tables, algorithms and charts (Al-Zaidy 
and Giles, 2017), (Tuarob, Bhatia, Mitra and Giles, 2013), (Safder, Hassan 
and Aljohani, 2018). These techniques are actively applied for effective doc-
ument summarization to improve the existing IR systems. A customized 
search engine AlgorithmSeer is designed for algorithms searching from full 
text articles (Tuarob, Bhatia, Mitra and Giles, 2016). This system uses some 
rule-based and machine learning based techniques for automatic extraction 
of algorithms from full text articles, then it creates a specialized algorithmic 
summary of a document to match against a user search query.

Moreover, to mine information from results figures present in scholar-
ly articles, FigureSeer, a specialized results figure extractor system has been 
presented (Siegel, Horvitz, Levin, Divvala and Farhadi, 2016). The designed 
system leveraged the deep learning-based techniques to identify, class an im-
age as results image. Further, the system mines the information presented 
on these figures to design a results figure search engine. Likewise, another 
system Deep-Figures has implemented a similar kind of system using super-
vised neural network-based technique (Siegel, Lourie, Power and Ammar, 
2018). Table search system is also a very prominent work to retrieve complex 
tables against user queries from massive repositories (Nargesian, Zhu, Pu 
and Miller, 2018). Additionally, linking these document elements (table, fig-
ure, algorithms) with their discussions or reference sentences written in the 
full body text of an article has its own significance. This additional informa-
tion about a document element can help to understand its context instead of 
reading and scrolling the whole paper (Bhatia and Mitra, 2012).
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Figure 1: Example of Pseudo-Code (PC) (Jung, Elmallah and Gouda, 2007)

Figure 2: Example of Algorithmic Procedure (AP), from (Stewart and Callan, 2009)

Figure 3: Example of Mathematical Formatting (Ratliff and Bagnell, 2007) 
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Figure 4: Example of Coding Style Algorithm 
(Marron, Stefanovic, Hermenegildo and Kapur, 2007)

Generally, run time complexity related to an algorithm is mentioned in the 
full body text of a document as algorithmic metadata. In order to find out the 
above-mentioned complexities of an algorithm, we need to link the algorithm 
and the paragraphs in which the complexity of that algorithm is discussed. 
Recently, a few techniques have been designed to extract evolution results lines 
related to an algorithm from full text articles (Safder, Sarfraz, Hassan, Ali and 
Tuarob, 2017). However, to the best of our knowledge no work has been done 
to find run time complexities and to link these run time complexities with 
their respective algorithm in full text scholarly publications.

 2.3 Algorithm Detection in Scholarly Documents
A number of rule-based, machine learning-based, and deep learn-

ing-based methods have been designed for detection and extraction of algo-
rithms from full-text scholarly documents (Tuarob, Bhatia, Mitra and Giles, 
2016), (Safder, Sarfraz, Hassan, Ali and Tuarob, 2017), (Safder, Hassan and 
Aljohani, 2018), (Lai, Xu, Liu and Zhao, 2015). Detection of an algorithm in 
a document is the first step, the aim is to make it retrievable on users’ que-
ries. For IR system algorithms metadata are needed, therefore caption lines, 
indication sentences, function names or algorithm labels are extracted from 
documents related to the algorithms for metadata.

Results related to algorithmic evaluation performance such as precision, 
recall, F-measure and accuracy are also extracted from the same documents 
to improve results for developers and researchers. Complexity of algorithm 
is also an important factor for IR systems; currently it not directly used in 
IR systems as effectively as it is important. We aim to improve the feature 
of time and space complexity identification from scholarly documents in 
our research. In this paper, we designed a mechanism to identify complexity 
lines and then to link these complexity lines with their relevant algorithm.
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3. Data аnd Limitations

There are over 100 million scholarly documents in the English language on 
the web in different fields (Khabsa and Giles, 2014), most of which are indexed 
by digital libraries. For our research we have selected a small dataset of 258 
documents, as discussed below.

Data. The dataset is selected from (Safder, Sarfraz, Hassan, Ali and Tuarob, 
2017), which consists of 258 documents originally selected from the CiteSeerX 
repository (Tuarob, Bhatia, Mitra and Giles, 2016), and has 37,000 lines of text. 
The data is manually labeled: 2,331 lines for algorithmic efficiency and 80 lines 
for algorithmic time complexity. There are some limitations to using this data-
set which are discussed in Section 3.2. We use algorithmic metadata lines tag-
ging as given in the section below10. Data is also tagged for the following type of 
lines related to algorithmic metadata (as shown in Figure 5): pseudo-code lines, 
pseudo-code caption lines, function name, algorithm label, indication sentence, 
algorithm section header, explanation sentence and proposal sentence. We use 
tagging to identify algorithms and their metadata, and then we compare this 
metadata with the paragraph in which the complexity is mentioned.

There are 142 documents in the dataset, in which we found algorithms and 
other tagged lines related to algorithms (tagging is listed above). There are 62 
documents in which we found complexity lines, and only 47 documents in 
which algorithms, an algorithm’s related tagged lines and complexities coexist. 

Reference Document Preparation. A reference document is prepared 
manually, by using those 47 documents, in which both algorithms and com-
plexities are found. 471 relations are identified between algorithms, and their 
time and space complexities in 35 documents out of 47 documents. This data-
set is used for results, comparisons and calculations.

Frequent Keywords Set. Frequent Keywords (FK) are extracted from algo-
rithmic metadata lines and are used in matching the synopsis of the complex-
ity line and the algorithmic metadata. The weightage of frequent keywords is 
less than normal keywords, as given in the following Inequality 1:

Wf < Wn (1)

Where Wf is frequent keywords and Wn is normal or non-frequent key-
words.

As frequent keywords are those keywords which are used more commonly 
than other, normal keywords, they have a smaller relative impact on finding 

10 The data and code used in this research can be downloaded from the following URL: 
https://github.com/slab-itu/icadl_link_algo.
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the relevance of complexity context and algorithmic metadata. The list of fre-
quent keywords is given in Table 1.

Figure 5: Algorithmic Metadata Lines 
(Kumar, Marathe, Parthasarathy and Srinivasan, 2004)

Cue words. We have used two lists of cue words (CW), one for com-
plexity context and the other for the identification of common asymptotic 
growth rate function names. Cue words for complexity context are listed in 
Table 1. Cue words to identity common functions growth rate of asymptotic 
bounds are also listed in Table 1. Cue words are used to weigh the compari-
son between complexity and the algorithm; they are also used to identify the 
asymptotic function names of complexity.

WordNet Library. We used WordNet11 library in Python for synonyms 
and semantically related terms along with original keywords to compare the 
context of the paragraph in which complexity is discussed and the algorith-
mic metadata, such as caption lines, indication sentences, function names or 
algorithm labels.

11 https://wordnet.princeton.edu.
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Table 1: Frequent Keywords Set, Cue Words for Complexity Context and for 
Common Complexity Functions

Sr. Frequent Keyword Cue Word for Complexity 
Context

Cue Word for 
Common Complexity 
Functions

1 algorithm algorithm polynomial

2 figure complexity poly

3 procedure time complexity constant

4 fig space complexity linear

5 method run time sublinear

6 following best case quadratic

7 steps worst case cubic

8 code pseudocode logarithmic

9 program computational time linearithmic

10 class efficiency exponential

11 function optimal solution parallel

12 search performance factorial

13 example approximation

14 based

15 sequence

16 given

17 skeleton

18 table

19 using

20 main

21 set

22 list

23 pseudocode

24 described

25 problem
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3.1 Pre-Processing
There are certain limitations in our dataset, some of which are dis-

cussed in this section. 

3.1.1 PDF to TXT conversion
While extracting plain text from pdf documents, complex functions 

of complexity was not handled, and they are hard to identify in text doc-
ument (as shown in Figure 6). Some words are not converted properly; 
most of them are special words such as the name of algorithm or key-
words closely related to algorithmic metadata. The critical thing is that 
asymptotic notations are not converted properly, as can be observed in 
line 16 of the text document – “O” is translated to “Cl” – and because of 
this issue our regular expression will fail to identify the complexity line. If 
complexity line identification fails, then it will also fail to link that line to 
any algorithm as it is the base case for further processing.

3.1.2 Algorithmic Metadata Tagging
As we are using a dataset which is already tagged for algorithmic 

metadata, our results are dependent upon how accurately the metadata is 
tagged. Accuracy of algorithmic metadata tagging is 76% with 79% preci-
sion, 77% recall and 77% F1 scores from (Safder, Sarfraz, Hassan, Ali and 
Tuarob, 2017).

3.1.3 Multiple Complexity Lines Association
Sometimes multiple algorithms are described in a document or mul-

tiple versions of the same algorithm are given, and the complexity of all 
the algorithms or all versions of the algorithms are discussed in the same 
paragraph or sometimes in a table (as shown in Figure 7), so it is hard 
to distinguish which complexity line is related to which algorithm. For 
the tabular case, it may not associate any of the complexity lines to any 
algorithm because, when rendering the table from PDF to text, it may 
convert each cell of the table to a new line, and when we built the context 
of the complexity line, we only collect text from five lines before and after 
the complexity line. In the tabular case, this context will have only a few 
words, and this will not help to link it with algorithmic metadata. In this 
case, multiple complexity lines will be associated to an algorithm or mul-
tiple algorithms will be linked to same complexity line.
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Figure 6: PDF to Text Conversion Issues (Milidiú, Laber and Pessoa, 1999)

Figure 7: Complexities of Multiple Algorithms in a Table 
(Keogh, Chu, Hart and Pazzani, 2001)

3.2 Error Rate
The error rate of our results may be high because the error will multiply 

with all error rates, such as the error rate of the pdf to text extraction, the er-
ror rate of the algorithmic metadata tagging and the error rate of our model. 
It can be calculated from the given Equation 2.

ERtotal=ERpdfToText×ERtagging×ERourModel     (2)
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where ERtotal is the overall total error rate, ERpdfToText is the error rate of 
pdf to plain text extraction, ERtagging is the error rate of algorithmic metadata 
tagging and ERourModel is the error rate of our model.

4. Methodology
Complexity lines are identified, and their context is built. Similarly, al-

gorithmic metadata lines are extracted and combined for each algorithm. 
After that, by comparing both the complexity context and the algorithmic 
metadata, a reference file is created in which links between complexity lines 
and algorithms are listed. A high-level diagram of proposed system is given 
in Figure 8.

4.1 Complexity Line Identification and Context Building
We use regular expressions in Python to identify complexity lines in 

plain text documents, and asymptotic notation formats are used in the reg-
ular expressions for this purpose. After identification of complexity lines, 
we have built context of the line, which is identified as a complexity line, 
to build context – five lines before and after the complexity line are used. 
Tagged; lines for algorithmic metadata are ignored while building the con-
text. There are multiple complexity lines in the same document, and context 
of each complexity line is built separately.

The grammar for our Regular Expression (RE) which is used to detect 
complexity lines from text documents is given in Figure 9, and the Python 
notation is given below:

r'\b\d*[OΩΘω0]\(.*[nmk\d(log)(ln)].*\)'    (3)

There are two main parts of this regular expression: the first part is to 
detect asymptotic bound notations such as O, Ω, Θ and ω; the second part is 
enclosed in starting parenthesis “(” and closing parenthesis “)”, and between 
these there can be any complexity notation: n is mostly used for input size 
or data size and some other letters such as m and k are also used for the 
same purpose; \d is used for number in regular expressions, it is used here 
for power or constant value detection; sometimes complexity is defined in 
a logarithmic function, (log) and (ln) are used for logarithmic function de-
tection. All these special characters and symbols are enclosed in a starting 
bracket “[” and a closing bracket “]” to ignore their sequence and occur-
rence; case is also ignored to detect upper- and lower-case letters.
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4.2 Section Detection
The role of sections is very important when extracting relevant informa-

tion. In scientific documents, sections can be identified using section head-
ers and their boundaries (Tuarob, Mitra and Giles, 2015). In our case, if a 
complexity line lies in related work or background section, it may be related 
to an algorithm which is not discussed in the current document and the au-
thor may be comparing the complexities of different algorithms. If it is in 
the implementation or methodology section, then there are high chances 
that it is related to algorithms which are described in the current document. 
Similarly, if it is in the abstract, then chances are very high for that. If it is in 
future work, then it may be the desired complexity to achieve in future. If it 
is in a reference section then it will be ignored, because in this case it will be 
part of some other document’s title.

4.3 Algorithm Metadata Extraction and Compilation
As algorithmic metadata is the lines related to an algorithm’s descrip-

tion and definition, these lines have already been tagged in our dataset (e.g., 
caption lines and algorithmic labels). These algorithmic metadata lines are 
extracted from the plain text document and combined together. Most fre-
quent keywords are also calculated using the frequency of the keywords in all 
documents. In some documents there are multiple algorithms; the metadata 
of each of them is combined separately.

4.4 Comparison of an Algorithm’s Metadata and Context of Complexity
We have built algorithmic metadata using tagged lines from plain text 

document, identified complexity lines and built their context from the same 
document, as shown in Figure 10. We then compare both of them and use a 
probabilistic method to compare algorithmic metadata and complexity line 
context. We have also used weights for direct keywords matching and syn-
onyms and semantically related terms. Synonyms and semantically related 
terms have been extracted from WordNet library using Python. 

Weights for direct keywords are higher than for synonyms and semanti-
cally related terms and weights for the most frequent terms are lower than 
for the less frequent terms in algorithmic metadata. By combining both mea-
sures, the following Inequality 4 is applied for matching keywords:

W1 > W2 > W3 > W4  (4)

where W1 is for direct non-frequent keywords, W2 is for direct frequent 
keywords, W3 is for synonyms or semantically related non-frequent key-
words and W4 is for synonyms or semantically related frequent keywords.
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Figure 8: High-Level Diagram of Proposed System
 

Figure 9: Grammar for Algorithmic Complexity

Figure 10: Comparison of Algorithm’s Metadata and Context of Complexity
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4.5 Reference or Association File for Algorithm and Complexity Re-
lations

A reference file is created to save the links between complexities and algo-
rithms. As an algorithm can be linked to more than one complexity line and 
one complexity line can be associated with more than one algorithm, we have 
created a dataset for associations or links between algorithmic metadata and 
complexity lines. In this dataset we have saved the line numbers of the com-
plexity lines with the text of the line and the line numbers of the algorithmic 
metadata with the metadata itself. Some other fields have been added in this 
dataset, such as number of keywords in algorithmic metadata, percentage of 
matching keywords and cue words that are matched in complexity context 
(both for complexity context and asymptotic function). We have saved this 
dataset to a file called reference or association file and this file will be used for 
ranking and indexing the algorithms for IR systems.

5. Experiments аnd Results
We have done a number of experiments on data to improve our results 

by changing matching percentage of algorithmic metadata with complexity 
synopsis-built form complexity context and with and without considering 
frequent keywords set and cue words for complexity context and asymptotic 
growth function names. We have also selected some feasible thresholds using 
experimental results to improve our results. Some of these experiments and 
their results are discussed in this section. Graphs for threshold values selec-
tion, ROC curves and precision-recall covers are also given.

Figure 11: Results without Cue Words for Threshold Selection
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5.1 Threshold Selection
Thresholds for matching the percentage ratio of algorithmic metadata 

and the complexity synopsis are selected using precision, recall, F1-score and 
accuracy data for all threshold values from 0 to 100 percent.

Graphs for all thresholds are also shown in Figure 11 and Figure 12. In 
both figures recall is very high at the beginning but goes down as we increase 
the value of the matching percentage; for the precision value it is low at the 
beginning but grows when we increase the value of the matching percentage. 
It is because almost all true links are identified when the percentage is low, 
but the false links identification ratio is also very high at a low matching per-
centage. Similarly, at a very high matching percentage only a few true links 
are identified but the false links identification ratio is also negligible. At the 
point where precision and recall curves intersect, the ratio of true prediction 
is maximum. 

F1-score and accuracy are low at the beginning, then they grow up to  
some point (near the intersection of precision and recall curves), and then 
they go down again, because F1-score is the harmonic average of precision 
and recall and accuracy is the ratio of correctly identified instances to the 
total number of instances.

Percentage threshold without using cue words is selected as 50 percent by 
using results of precision, recall, F1-score and accuracy, as shown in Figure 
11, in which the intersection of precision, recall and F1- score curves is near 
50 percent. Similarly, percentage threshold for with using cue words is select-
ed as 55 percent by using results of precision, recall, F1-meaure and accuracy, 
as shown in Figure 12. Similarly in this figure the intersection of precision, 
recall and F1-score curves is near 55 percent. These thresholds are used in 
our experimental setup, which is given in the next sections.

Figure 12: Results with Cue Words Threshold Selection
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5. 2 Experimental Setup
We always learn from our experiments, and we have done several ex-

periments on our data to improve our results, but as we discussed earlier, 
there are some limitations in our data and model, so we can only achieve 
our results up to some possible level. Four experiments are discussed in the 
following sections.

Table 2: Truth Table, 50% Matched, with No-Frequent Keywords 
and No-Cue Words (NFNC50)

Measures Value

Total True 471

True matched 365

False matched 189

True and False Both matched 554

Not matched 106

Total 660

5.2.1 Experiment 1
In the first experiment, we used a matching percentage ratio of algo-

rithmic metadata up to 50 percent, and in this experiment, we complete-
ly ignored the cue words and the frequent keywords from the algorithmic 
metadata. We named this experiment NFNC50 (No-Frequent keywords and 
No-Cue words with 50% threshold). Results for experiment 1 are summa-
rized in Table 2.

5.2.2 Experiment 2
In the second experiment, we used a matching percentage ratio of algo-

rithmic metadata up to 50 percent, and in this experiment we ignored the 
cue words, but we used frequent keywords from the algorithmic metada-
ta. Frequent keywords are considered as low weighted in this case, frequent 
keywords set is generated from algorithmic metadata as discussed in Section 
3.1.2. We named this experiment FNC50 (Frequent keywords and No-Cue 
words with 50% threshold). Results for experiment 2, are summarized in 
Table 3.
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Table 3: Truth Table, 50% Matched, with Frequent Keywords 
and No-Cue Words (FNC50)

Measures Value

Total True 471

True matched 359

False matched 104

True and False Both matched 463

Not matched 112

Total 575

5.2.3 Experiment 3
In this experiment, we used matching percentage ratio of algorithmic 

metadata along with cue words, greater than 55 percent, and, we added the 
cue words matching ratio for the overall percentage. Frequent keywords are 
also considered low weighted in this case. We named this experiment FC55 
(Frequent keywords and Cue words with 55% threshold). Results for this 
experiment are summarized in Table 4.

Table 4: Truth Table, 50% Metadata Matched Overall with Cue Words (FC55)

Measures Value

Total True 471

True matched 355

False matched 111

True and False Both matched 466

Not matched 116

Total 582

5.2.4 Experiment 4
In this experiment, we used a matching percentage ratio of algorithmic 

metadata up to 50 percent separately, and we added the cue words matching 
ratio after that. In other words, we combined the conditions of the second 
and the third experiment, and in this way, the results were maximized. We 
named this experiment FNC50FC55. Results for this experiment are sum-
marized in Table 5.
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Table 5: Truth Table, 50% Metadata Matched and 55% Overall with Cue Words 
(FNC50FC55)

Measures Value

Total True 471

True matched 354

False matched 86

True and False Both matched 440

Not matched 117

Total 557

5.3 Calculations
Results are calculated using standard formulas as discussed in this sec-

tion.
5.3.1 Precision
Precision is defined as the ratio of correctly identified instances to the 

total predicted positive instances. The equation to calculate precision is given 
as follows:  

Precision =    
                                                                             (5)

The worst precision is recorded for experiment 3 (FC55), which is 61 per-
cent, and the best precision is yielded by experiment 4 (FNC50FC55), which 
is 81 percent.

5.3.2 Recall
Recall is defined as the ratio of correctly identified instances to all actual 

observations in the data; it is also called ‘sensitivity’. Recall is calculated using 
the following equation:

Recall =                                           (6)

Experiment 1 (NFNC50) yielded the best recall, which is 77 percent, and 
the worst recall is recorded for experiment 3 (FC55), which is 75 percent.

F1 Score
It is the harmonic average of precision and recall, as given below:

F1 Score =                                                  (7)

True and False Both Matched (TP+FP)
True matched (TP)

True matched (TP)
Total True (TP+FN)

(Recall + Precision)
2*(Recall * Precision)
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F1 score is more useful than accuracy. The best F1 score is yielded by 
experiment 4 (FNC50FC55), which is 78 and the worst F1 score is yielded by 
experiment 3 (FC55), which is 67 percent.

Accuracy
Accuracy is the most common measure to check the performance of re-

sults; it is the ratio of correctly identified instances to the total number of 
instances, as given below:

				  

Accuracy =                                                     (8)

The best accuracy is yielded by experiment 4 (FNC50FC55), which is 65 
and the worst accuracy is yielded by experiment 1 (NFNC50), which is 56 
percent.

Results
Results are shown in Table 6, as in our first experiment we did not use 

frequent keywords from algorithmic metadata and cue words for complexity 
context and asymptotic function names are completely ignored. Recall was 
maximum, which is 77%, but accuracy is low. In other words, in this case 
maximum actual links are identified but false results ratio is also high. 

In the second experiment we have considered only frequent keywords 
for matching weights and we see that results are improved, as precision was 
improved from 66% to 78% and accuracy – from 56% to 64%; however, recall 
was down from 77% to 76%, 

In our third experiment, we have also considered the cue words along 
with frequent keywords to evaluate the weights and increase the matching 
percentage threshold from 50% to 55%. In this case results were not im-
proved, as we can see in the third row of Table 6. 

In our last experiment, we have combined the conditions and thresholds 
of the second and third experiment. By doing this we got maximum results, 
as precision is improved significantly; F1 score and accuracy is also maxi-
mized in this case. Finally, we have achieved 81% precision, 75% recall, 78% 
F1-score and 65% accuracy.

Precision, recall, F-measure and accuracy for linking the algorithm and 
complexity line for the different experiments are given in Table 6.

True matched (TP+TN)
Total (TP+FP+FN+TN)
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Table 6: Precision, Recall, F-measure and Accuracy for Algorithm and Complexity Line 
Linking

Name Method Precision Recall F1 Score Accuracy

NFNC50
50% matched with no 
frequent keywords and no 
cue words

0.66 0.77 0.71 0.56

FNC50
50% matched with fre-
quent keywords and no 
cue words

0.78 0.76 0.77 0.64

FC55 55% matched metadata 
and cue words overall 0.61 0.75 0.67 0.62

FNC50FC55 Combination of the second 
and the third experiment 0.81 0.75 0.78 0.65

5.4.1 ROC and Precision-Recall Curves
Receiver Operating Characteristic (ROC) curves are shown in Figure 13, 

in which we can see that the area under the curve for NFNQ50 is 0.90, which 
is the maximum among the other curves because recall for this experiment 
was maximum.

Precision-Recall curves are shown in Figure 14. As can be seen that the 
areas under curves for all three experiment 2, 3 and 4 are almost same be-
cause recall for these experiments is almost the same, and the area under the 
curve for experiment 1 (NFNQ50) is the minimum.

Figure 13: ROC (Receiver Operating Characteristic) Curves
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Figure 14: Precision-Recall Curves

6. Conclusion аnd Future Work

6.1 Concluding Remarks
Linking non-textual document elements (NTDEs), such as charts, di-

agrams, pseudocodes and tables to their relevant paragraph in a scholarly 
document is a critical process to improve the relevant results for IR systems 
which are mainly focused on this type of search. In this research we have 
focused on algorithms and their complexities linking using complexity lines 
synopsis.

Scientific publications host a tremendous number of high-quality algo-
rithms developed by professional researchers. In this paper we have linked 
the complexity lines and the algorithmic metadata in the same scientific doc-
ument. We have used keywords from algorithmic metadata and a synopsis 
generated from five lines before and after the complexity line. Complexity 
of algorithms, for both time and space, is the main concern of developers 
and researchers. Currently, IR systems for algorithmic search did not directly 
consider relevant complexity of algorithms to rank and order the results. 

In our research, a frequent keywords set and two cue words sets have 
been used to improve our results. Precision, recall, F1-meaure and accura-
cy graphs have been used for thresholds selections. Complexity lines have 
been identified by regular expressions with the use of asymptotic notations. 
WordNet library has been used for synonyms or related terms. A reference 
file has been manually annotated for results and comparisons. An associated 
file has been created to save the links between the complexity lines and their 
corresponding algorithms. A number of experiments have been performed 
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with different combinations of frequent keywords, cue words, synonyms or 
related terms, and thresholds selections for metadata comparison. We have 
improved our results by combining the best performing experiments.

Future Work
In the future we can use similar linking methodology to link different 

non-textual document elements, such as figures, tables and charts to their 
relevant paragraphs in the same document. By using our methodology, we 
can extract and catalogue relevant algorithms and can introduce several ex-
citing applications including discovering new or enhanced algorithms or 
analysing different versions of an algorithm. We can also improve algorith-
mic information retrieval systems by using the complexity of algorithms to 
index and rank the algorithmic search results. An AI enabled search engine 
architecture is used in (Safder, Hassan and Aljohani, 2018) and (Safder and 
Hassan, 2018), where an EMD embedded model is used to improve relevant 
information retrieval, which is a RCNN based model; we can use our algo-
rithmic metadata and complexity lines context to improve this search engine.
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