
39

EXTRACTING ALGORITHMIC COMPLEXITY
IN SCIENTIFIC LITERATURE FOR
ADVANCE SEARCHING

Abu Bakar1, Raheem Sarwar2, *, Saeed-Ul Hassan3,
Raheel Nawaz4

1Computer Science, Information Technology University, Lahore, Pakistan
2 Department of Operations, Technology, Events and Hospitality Management,
Manchester Metropolitan University, United Kingdom
3 Department of Computing and Mathematics, Manchester Metropolitan University,
United Kingdom
4 Staffordshire University, United Kingdom
*Corresponding Author (R.Sarwar@mmu.ac.uk)

Abstract
Non-textual document elements such as charts, diagrams, algorithms and ta-

bles play an important role to present key information in scientific documents.
Recent advances in information retrieval systems tap this information to answer
more complex user queries by mining text pertaining to non-textual document
elements from full text. Algorithms are critically important in computer science.
Researchers are working on existing algorithms to improve them for critical ap-
plication. Moreover, new algorithms for unsolved and newly faced problems are

	 https://doi.org/10.33919/JCAL.23.1.2

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

40

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

under development. These enhanced and new algorithms are mostly published in
scholarly documents. The complexity of these algorithms is also discussed in the
same document by the authors. Complexity of an algorithm is also an important
factor for information retrieval (IR) systems. In this paper, we mine the relevant
complexities of algorithms from full text document by comparing the metadata of
the algorithm, such as caption and function name, with the context of the paragraph
in which complexity related discussion is made by the authors. Using the dataset
of 256 documents downloaded from CiteSeerX repository, we manually annotate
417 links between algorithms and their complexities. Further, we apply our novel
rule-based approach that identifies the desired links with 81% precision, 75% recall,
78% F1-score and 65% accuracy. Overall, our method of identifying the links has
potential to improve information retrieval systems that tap the advancements of full
text and more specifically non-textual document elements.

Keywords: algorithm search, algorithm complexity, information retrieval,
non-textual document elements (NTDE)

1. Introduction
Academic literature is growing exponentially in last two decades and

flourishing in an unprecedented pace, which has brought new challenges to
information retrieval research (Khan, Liu, Shakil and Alam, 2017). Non-Tex-
tual Document Elements (NTDEs) such as figures, charts, pseudo-codes,
and tables are very common in scientific documents, and they are vital ele-
ments for communicating the key information. These elements are sometime
placed at the start or at the end of the page instead of following the flow of
document text, and the discussion about these elements may or may not be
on the same page, the discussion about these elements mostly has the ref-
erence of the caption of the entity. Sometimes, these elements are referred
multiple times in different sections of the scholarly document.

Algorithms are well-defined methodologies to solve the problems and
they are important in every field of science and technology. There are many
features of an algorithm such as correctness, elegance, efficiency and scal-
ability. Efficiency of an algorithm is defined as complexity of algorithm, and
it is based on time and space. The main aim of estimating the complexity
of algorithms is to categorize them according to their efficiency. Complexity
of algorithm is described asymptotically using three types of notations as:

41

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

(1) O-notation (big oh notation) used for upper bound, (2) Ω-notation (big
omega notation) used for lower bound and (3) Θ-notation (big theta nota-
tion) used for tight bound. We have used these asymptotic notations to iden-
tify the complexity lines in full text scholarly documents.

Scholarly publications host a tremendous number of high-quality algo-
rithms, developed by professionals and researchers. Normally, when new al-
gorithms are published, or existing algorithms are enhanced, their time and/
or space complexities are also discussed in the same document by the au-
thors. Most of the time authors are not working on algorithms or not trying
to improve existing ones, they are publishing the algorithms that they have
used in their research, and sometimes they do not discuss the complexity of
the algorithm because it is well-known, or because they do not focus on it.

The complexities of an algorithm (for time and space) can be identified
from the document by analyzing the context of the paragraph in which the
complexity is mentioned, and the metadata (such as the algorithm caption
and the algorithm label) of the algorithm extracted from the same document.

Our Research Contributions. In this research, our contributions are as
follows:

•	 Identification of algorithmic complexity lines in full text document
using regular expressions and synopsis generation for each complex-
ity line.

•	 Algorithmic metadata compilation of algorithms – normally, there
are multiple algorithms in a scholarly document and the metadata of
each algorithm are compiled separately.

•	 Linking complexity related textual lines to algorithmic metadata us-
ing a novel rule-based approach.

In Section 2, we have discussed related work. In Section 3, a dataset is
described, and a system model of our research is discussed in Section 4. Ex-
periments and their results are given in Section 5 and Section 6 concludes the
research with future suggestions.

2. Literature Review аnd Related Work
Many algorithms are being published in research articles on a monthly

and yearly basis (Bhatia, Tuarob, Mitra and Giles, 2011). Hundreds of articles
are published and/or added to digital archives on a monthly and yearly basis
and the arXiv1 has crossed the boundary of 1.3M full text publications, which
shows the importance of this research.
1 https://arxiv.org/stats/monthly_submissions.

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

42

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

2.1 Algorithmic Representations
Normally, algorithms are explained in pseudo-code (PC) (as shown in

Figure 1), in natural language as algorithmic-procedure (AP) (as shown in
Figure 2), in mathematical formatting (as shown in Figure 3) or in coding
style (as shown in Figure 4) (Tuarob, Bhatia, Mitra and Giles, 2016). Algo-
rithms can be implemented in any programming language. There are a num-
ber of document elements in a scholarly document such as figures (Siegel,
Horvitz, Levin, Divvala and Farhadi, 2016), tables (Liu, Bai, Mitra and Giles,
2007), forms (Coüasnon and Lemaitre, 2014), algorithms (Bhatia, Mitra and
Giles, 2010) mathematical expressions (Baker, Sexton, Sorge and Suzuki,
2011) (Zanibbi and Blostein, 2012), programing codes and a number of tex-
tual sections such as abstract, acknowledgments (Khabsa, Treeratpituk and
Giles, 2012), collaborations (Chen, Gou, Zhang and Giles, 2011), methodol-
ogy, results (e.g., precision, recall, or F-measure), conclusion and references.
Algorithms are normally given as figures (Bhatia and Mitra, 2012), in math-
ematical formatting, in coding style, or sparse boxes like other document
elements (Tuarob, Bhatia, Mitra and Giles, 2013).

2.2 Information Retrieval Systems and Algorithms
Information retrieval (IR) is a technique for searching required or rele-

vant information form exiting data (Wang, 2009). There are several search
engines to search for academic literature such as Google Scholar2, Micro-
soft Academic3, PloS One4, Semantic Scholar5, Science Direct6, ACM Digital
Library7 and CiteSeerX8, an academic document search (Wu, et al., 2015).
There are also some search engines that are optimized for a specific area
of science such as BioText Search Engine9 which is optimized for bioinfor-
matics related search (Hearst, et al., 2007). There are some other IR systems
such as TableSeer for searching tables in digital libraries (Liu, Bai, Mitra and

2 https://scholar.google.com/.
3 https://academic.microsoft.com/.
4 http://journals.plos.org/plosone/.
5 https://www.semanticscholar.org.
6 https://www.sciencedirect.com/.
7 https://dl.acm.org.
8 http://citeseerx.ist.psu.edu/index.
9 http://biosearch.berkeley.edu/

43

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

Giles, 2007), AckSeer for acknowledgments (Khabsa, Treeratpituk and Giles,
2012), CollabSeer for collaborations (Chen, Gou, Zhang and Giles, 2011),
FigureSeer for figures (Siegel, Horvitz, Levin, Divvala and Farhadi, 2016)
and AlgorithmSeer for searching algorithms in scholarly big data (Tuarob,
Bhatia, Mitra and Giles, 2016).

Efficient algorithms are critically important and sometime crucial for cer-
tain software projects. Nowadays, there are a number of source code search
engines for software developers and researchers to find relevant source code
according to their requirements. Information retrieval systems for algo-
rithms in scholarly documents are improving in past recent years to fulfill
the search queries by providing relevant information such as Sourerer (Ba-
jracharya, Ossher and Lopes, 2009) and Exemplar (EXEcutable exaMPLes
ARchive) (McMillan, Grechanik, Poshyvanyk, Fu and Xie, 2012).

In recent years, a few attempts have been made to extract non textual
document elements such as figures, tables, algorithms and charts (Al-Zaidy
and Giles, 2017), (Tuarob, Bhatia, Mitra and Giles, 2013), (Safder, Hassan
and Aljohani, 2018). These techniques are actively applied for effective doc-
ument summarization to improve the existing IR systems. A customized
search engine AlgorithmSeer is designed for algorithms searching from full
text articles (Tuarob, Bhatia, Mitra and Giles, 2016). This system uses some
rule-based and machine learning based techniques for automatic extraction
of algorithms from full text articles, then it creates a specialized algorithmic
summary of a document to match against a user search query.

Moreover, to mine information from results figures present in scholar-
ly articles, FigureSeer, a specialized results figure extractor system has been
presented (Siegel, Horvitz, Levin, Divvala and Farhadi, 2016). The designed
system leveraged the deep learning-based techniques to identify, class an im-
age as results image. Further, the system mines the information presented
on these figures to design a results figure search engine. Likewise, another
system Deep-Figures has implemented a similar kind of system using super-
vised neural network-based technique (Siegel, Lourie, Power and Ammar,
2018). Table search system is also a very prominent work to retrieve complex
tables against user queries from massive repositories (Nargesian, Zhu, Pu
and Miller, 2018). Additionally, linking these document elements (table, fig-
ure, algorithms) with their discussions or reference sentences written in the
full body text of an article has its own significance. This additional informa-
tion about a document element can help to understand its context instead of
reading and scrolling the whole paper (Bhatia and Mitra, 2012).

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

44

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

Figure 1: Example of Pseudo-Code (PC) (Jung, Elmallah and Gouda, 2007)

Figure 2: Example of Algorithmic Procedure (AP), from (Stewart and Callan, 2009)

Figure 3: Example of Mathematical Formatting (Ratliff and Bagnell, 2007)

45

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

Figure 4: Example of Coding Style Algorithm
(Marron, Stefanovic, Hermenegildo and Kapur, 2007)

Generally, run time complexity related to an algorithm is mentioned in the
full body text of a document as algorithmic metadata. In order to find out the
above-mentioned complexities of an algorithm, we need to link the algorithm
and the paragraphs in which the complexity of that algorithm is discussed.
Recently, a few techniques have been designed to extract evolution results lines
related to an algorithm from full text articles (Safder, Sarfraz, Hassan, Ali and
Tuarob, 2017). However, to the best of our knowledge no work has been done
to find run time complexities and to link these run time complexities with
their respective algorithm in full text scholarly publications.

 2.3 Algorithm Detection in Scholarly Documents
A number of rule-based, machine learning-based, and deep learn-

ing-based methods have been designed for detection and extraction of algo-
rithms from full-text scholarly documents (Tuarob, Bhatia, Mitra and Giles,
2016), (Safder, Sarfraz, Hassan, Ali and Tuarob, 2017), (Safder, Hassan and
Aljohani, 2018), (Lai, Xu, Liu and Zhao, 2015). Detection of an algorithm in
a document is the first step, the aim is to make it retrievable on users’ que-
ries. For IR system algorithms metadata are needed, therefore caption lines,
indication sentences, function names or algorithm labels are extracted from
documents related to the algorithms for metadata.

Results related to algorithmic evaluation performance such as precision,
recall, F-measure and accuracy are also extracted from the same documents
to improve results for developers and researchers. Complexity of algorithm
is also an important factor for IR systems; currently it not directly used in
IR systems as effectively as it is important. We aim to improve the feature
of time and space complexity identification from scholarly documents in
our research. In this paper, we designed a mechanism to identify complexity
lines and then to link these complexity lines with their relevant algorithm.

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

46

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

3. Data аnd Limitations

There are over 100 million scholarly documents in the English language on
the web in different fields (Khabsa and Giles, 2014), most of which are indexed
by digital libraries. For our research we have selected a small dataset of 258
documents, as discussed below.

Data. The dataset is selected from (Safder, Sarfraz, Hassan, Ali and Tuarob,
2017), which consists of 258 documents originally selected from the CiteSeerX
repository (Tuarob, Bhatia, Mitra and Giles, 2016), and has 37,000 lines of text.
The data is manually labeled: 2,331 lines for algorithmic efficiency and 80 lines
for algorithmic time complexity. There are some limitations to using this data-
set which are discussed in Section 3.2. We use algorithmic metadata lines tag-
ging as given in the section below10. Data is also tagged for the following type of
lines related to algorithmic metadata (as shown in Figure 5): pseudo-code lines,
pseudo-code caption lines, function name, algorithm label, indication sentence,
algorithm section header, explanation sentence and proposal sentence. We use
tagging to identify algorithms and their metadata, and then we compare this
metadata with the paragraph in which the complexity is mentioned.

There are 142 documents in the dataset, in which we found algorithms and
other tagged lines related to algorithms (tagging is listed above). There are 62
documents in which we found complexity lines, and only 47 documents in
which algorithms, an algorithm’s related tagged lines and complexities coexist.

Reference Document Preparation. A reference document is prepared
manually, by using those 47 documents, in which both algorithms and com-
plexities are found. 471 relations are identified between algorithms, and their
time and space complexities in 35 documents out of 47 documents. This data-
set is used for results, comparisons and calculations.

Frequent Keywords Set. Frequent Keywords (FK) are extracted from algo-
rithmic metadata lines and are used in matching the synopsis of the complex-
ity line and the algorithmic metadata. The weightage of frequent keywords is
less than normal keywords, as given in the following Inequality 1:

Wf < Wn (1)

Where Wf is frequent keywords and Wn is normal or non-frequent key-
words.

As frequent keywords are those keywords which are used more commonly
than other, normal keywords, they have a smaller relative impact on finding

10 The data and code used in this research can be downloaded from the following URL:
https://github.com/slab-itu/icadl_link_algo.

47

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

the relevance of complexity context and algorithmic metadata. The list of fre-
quent keywords is given in Table 1.

Figure 5: Algorithmic Metadata Lines
(Kumar, Marathe, Parthasarathy and Srinivasan, 2004)

Cue words. We have used two lists of cue words (CW), one for com-
plexity context and the other for the identification of common asymptotic
growth rate function names. Cue words for complexity context are listed in
Table 1. Cue words to identity common functions growth rate of asymptotic
bounds are also listed in Table 1. Cue words are used to weigh the compari-
son between complexity and the algorithm; they are also used to identify the
asymptotic function names of complexity.

WordNet Library. We used WordNet11 library in Python for synonyms
and semantically related terms along with original keywords to compare the
context of the paragraph in which complexity is discussed and the algorith-
mic metadata, such as caption lines, indication sentences, function names or
algorithm labels.

11 https://wordnet.princeton.edu.

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

48

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

Table 1: Frequent Keywords Set, Cue Words for Complexity Context and for
Common Complexity Functions

Sr. Frequent Keyword Cue Word for Complexity
Context

Cue Word for
Common Complexity
Functions

1 algorithm algorithm polynomial

2 figure complexity poly

3 procedure time complexity constant

4 fig space complexity linear

5 method run time sublinear

6 following best case quadratic

7 steps worst case cubic

8 code pseudocode logarithmic

9 program computational time linearithmic

10 class efficiency exponential

11 function optimal solution parallel

12 search performance factorial

13 example approximation

14 based

15 sequence

16 given

17 skeleton

18 table

19 using

20 main

21 set

22 list

23 pseudocode

24 described

25 problem

49

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

3.1 Pre-Processing
There are certain limitations in our dataset, some of which are dis-

cussed in this section.

3.1.1 PDF to TXT conversion
While extracting plain text from pdf documents, complex functions

of complexity was not handled, and they are hard to identify in text doc-
ument (as shown in Figure 6). Some words are not converted properly;
most of them are special words such as the name of algorithm or key-
words closely related to algorithmic metadata. The critical thing is that
asymptotic notations are not converted properly, as can be observed in
line 16 of the text document – “O” is translated to “Cl” – and because of
this issue our regular expression will fail to identify the complexity line. If
complexity line identification fails, then it will also fail to link that line to
any algorithm as it is the base case for further processing.

3.1.2 Algorithmic Metadata Tagging
As we are using a dataset which is already tagged for algorithmic

metadata, our results are dependent upon how accurately the metadata is
tagged. Accuracy of algorithmic metadata tagging is 76% with 79% preci-
sion, 77% recall and 77% F1 scores from (Safder, Sarfraz, Hassan, Ali and
Tuarob, 2017).

3.1.3 Multiple Complexity Lines Association
Sometimes multiple algorithms are described in a document or mul-

tiple versions of the same algorithm are given, and the complexity of all
the algorithms or all versions of the algorithms are discussed in the same
paragraph or sometimes in a table (as shown in Figure 7), so it is hard
to distinguish which complexity line is related to which algorithm. For
the tabular case, it may not associate any of the complexity lines to any
algorithm because, when rendering the table from PDF to text, it may
convert each cell of the table to a new line, and when we built the context
of the complexity line, we only collect text from five lines before and after
the complexity line. In the tabular case, this context will have only a few
words, and this will not help to link it with algorithmic metadata. In this
case, multiple complexity lines will be associated to an algorithm or mul-
tiple algorithms will be linked to same complexity line.

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

50

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

Figure 6: PDF to Text Conversion Issues (Milidiú, Laber and Pessoa, 1999)

Figure 7: Complexities of Multiple Algorithms in a Table
(Keogh, Chu, Hart and Pazzani, 2001)

3.2 Error Rate
The error rate of our results may be high because the error will multiply

with all error rates, such as the error rate of the pdf to text extraction, the er-
ror rate of the algorithmic metadata tagging and the error rate of our model.
It can be calculated from the given Equation 2.

ERtotal=ERpdfToText×ERtagging×ERourModel (2)

51

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

where ERtotal is the overall total error rate, ERpdfToText is the error rate of
pdf to plain text extraction, ERtagging is the error rate of algorithmic metadata
tagging and ERourModel is the error rate of our model.

4. Methodology
Complexity lines are identified, and their context is built. Similarly, al-

gorithmic metadata lines are extracted and combined for each algorithm.
After that, by comparing both the complexity context and the algorithmic
metadata, a reference file is created in which links between complexity lines
and algorithms are listed. A high-level diagram of proposed system is given
in Figure 8.

4.1 Complexity Line Identification and Context Building
We use regular expressions in Python to identify complexity lines in

plain text documents, and asymptotic notation formats are used in the reg-
ular expressions for this purpose. After identification of complexity lines,
we have built context of the line, which is identified as a complexity line,
to build context – five lines before and after the complexity line are used.
Tagged; lines for algorithmic metadata are ignored while building the con-
text. There are multiple complexity lines in the same document, and context
of each complexity line is built separately.

The grammar for our Regular Expression (RE) which is used to detect
complexity lines from text documents is given in Figure 9, and the Python
notation is given below:

r'\b\d*[OΩΘω0]\(.*[nmk\d(log)(ln)].*\)' (3)

There are two main parts of this regular expression: the first part is to
detect asymptotic bound notations such as O, Ω, Θ and ω; the second part is
enclosed in starting parenthesis “(” and closing parenthesis “)”, and between
these there can be any complexity notation: n is mostly used for input size
or data size and some other letters such as m and k are also used for the
same purpose; \d is used for number in regular expressions, it is used here
for power or constant value detection; sometimes complexity is defined in
a logarithmic function, (log) and (ln) are used for logarithmic function de-
tection. All these special characters and symbols are enclosed in a starting
bracket “[” and a closing bracket “]” to ignore their sequence and occur-
rence; case is also ignored to detect upper- and lower-case letters.

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

52

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

4.2 Section Detection
The role of sections is very important when extracting relevant informa-

tion. In scientific documents, sections can be identified using section head-
ers and their boundaries (Tuarob, Mitra and Giles, 2015). In our case, if a
complexity line lies in related work or background section, it may be related
to an algorithm which is not discussed in the current document and the au-
thor may be comparing the complexities of different algorithms. If it is in
the implementation or methodology section, then there are high chances
that it is related to algorithms which are described in the current document.
Similarly, if it is in the abstract, then chances are very high for that. If it is in
future work, then it may be the desired complexity to achieve in future. If it
is in a reference section then it will be ignored, because in this case it will be
part of some other document’s title.

4.3 Algorithm Metadata Extraction and Compilation
As algorithmic metadata is the lines related to an algorithm’s descrip-

tion and definition, these lines have already been tagged in our dataset (e.g.,
caption lines and algorithmic labels). These algorithmic metadata lines are
extracted from the plain text document and combined together. Most fre-
quent keywords are also calculated using the frequency of the keywords in all
documents. In some documents there are multiple algorithms; the metadata
of each of them is combined separately.

4.4 Comparison of an Algorithm’s Metadata and Context of Complexity
We have built algorithmic metadata using tagged lines from plain text

document, identified complexity lines and built their context from the same
document, as shown in Figure 10. We then compare both of them and use a
probabilistic method to compare algorithmic metadata and complexity line
context. We have also used weights for direct keywords matching and syn-
onyms and semantically related terms. Synonyms and semantically related
terms have been extracted from WordNet library using Python.

Weights for direct keywords are higher than for synonyms and semanti-
cally related terms and weights for the most frequent terms are lower than
for the less frequent terms in algorithmic metadata. By combining both mea-
sures, the following Inequality 4 is applied for matching keywords:

W1 > W2 > W3 > W4 (4)

where W1 is for direct non-frequent keywords, W2 is for direct frequent
keywords, W3 is for synonyms or semantically related non-frequent key-
words and W4 is for synonyms or semantically related frequent keywords.

53

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

Figure 8: High-Level Diagram of Proposed System

Figure 9: Grammar for Algorithmic Complexity

Figure 10: Comparison of Algorithm’s Metadata and Context of Complexity

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

54

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

4.5 Reference or Association File for Algorithm and Complexity Re-
lations

A reference file is created to save the links between complexities and algo-
rithms. As an algorithm can be linked to more than one complexity line and
one complexity line can be associated with more than one algorithm, we have
created a dataset for associations or links between algorithmic metadata and
complexity lines. In this dataset we have saved the line numbers of the com-
plexity lines with the text of the line and the line numbers of the algorithmic
metadata with the metadata itself. Some other fields have been added in this
dataset, such as number of keywords in algorithmic metadata, percentage of
matching keywords and cue words that are matched in complexity context
(both for complexity context and asymptotic function). We have saved this
dataset to a file called reference or association file and this file will be used for
ranking and indexing the algorithms for IR systems.

5. Experiments аnd Results
We have done a number of experiments on data to improve our results

by changing matching percentage of algorithmic metadata with complexity
synopsis-built form complexity context and with and without considering
frequent keywords set and cue words for complexity context and asymptotic
growth function names. We have also selected some feasible thresholds using
experimental results to improve our results. Some of these experiments and
their results are discussed in this section. Graphs for threshold values selec-
tion, ROC curves and precision-recall covers are also given.

Figure 11: Results without Cue Words for Threshold Selection

55

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

5.1 Threshold Selection
Thresholds for matching the percentage ratio of algorithmic metadata

and the complexity synopsis are selected using precision, recall, F1-score and
accuracy data for all threshold values from 0 to 100 percent.

Graphs for all thresholds are also shown in Figure 11 and Figure 12. In
both figures recall is very high at the beginning but goes down as we increase
the value of the matching percentage; for the precision value it is low at the
beginning but grows when we increase the value of the matching percentage.
It is because almost all true links are identified when the percentage is low,
but the false links identification ratio is also very high at a low matching per-
centage. Similarly, at a very high matching percentage only a few true links
are identified but the false links identification ratio is also negligible. At the
point where precision and recall curves intersect, the ratio of true prediction
is maximum.

F1-score and accuracy are low at the beginning, then they grow up to
some point (near the intersection of precision and recall curves), and then
they go down again, because F1-score is the harmonic average of precision
and recall and accuracy is the ratio of correctly identified instances to the
total number of instances.

Percentage threshold without using cue words is selected as 50 percent by
using results of precision, recall, F1-score and accuracy, as shown in Figure
11, in which the intersection of precision, recall and F1- score curves is near
50 percent. Similarly, percentage threshold for with using cue words is select-
ed as 55 percent by using results of precision, recall, F1-meaure and accuracy,
as shown in Figure 12. Similarly in this figure the intersection of precision,
recall and F1-score curves is near 55 percent. These thresholds are used in
our experimental setup, which is given in the next sections.

Figure 12: Results with Cue Words Threshold Selection

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

56

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

5. 2 Experimental Setup
We always learn from our experiments, and we have done several ex-

periments on our data to improve our results, but as we discussed earlier,
there are some limitations in our data and model, so we can only achieve
our results up to some possible level. Four experiments are discussed in the
following sections.

Table 2: Truth Table, 50% Matched, with No-Frequent Keywords
and No-Cue Words (NFNC50)

Measures Value

Total True 471

True matched 365

False matched 189

True and False Both matched 554

Not matched 106

Total 660

5.2.1 Experiment 1
In the first experiment, we used a matching percentage ratio of algo-

rithmic metadata up to 50 percent, and in this experiment, we complete-
ly ignored the cue words and the frequent keywords from the algorithmic
metadata. We named this experiment NFNC50 (No-Frequent keywords and
No-Cue words with 50% threshold). Results for experiment 1 are summa-
rized in Table 2.

5.2.2 Experiment 2
In the second experiment, we used a matching percentage ratio of algo-

rithmic metadata up to 50 percent, and in this experiment we ignored the
cue words, but we used frequent keywords from the algorithmic metada-
ta. Frequent keywords are considered as low weighted in this case, frequent
keywords set is generated from algorithmic metadata as discussed in Section
3.1.2. We named this experiment FNC50 (Frequent keywords and No-Cue
words with 50% threshold). Results for experiment 2, are summarized in
Table 3.

57

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

Table 3: Truth Table, 50% Matched, with Frequent Keywords
and No-Cue Words (FNC50)

Measures Value

Total True 471

True matched 359

False matched 104

True and False Both matched 463

Not matched 112

Total 575

5.2.3 Experiment 3
In this experiment, we used matching percentage ratio of algorithmic

metadata along with cue words, greater than 55 percent, and, we added the
cue words matching ratio for the overall percentage. Frequent keywords are
also considered low weighted in this case. We named this experiment FC55
(Frequent keywords and Cue words with 55% threshold). Results for this
experiment are summarized in Table 4.

Table 4: Truth Table, 50% Metadata Matched Overall with Cue Words (FC55)

Measures Value

Total True 471

True matched 355

False matched 111

True and False Both matched 466

Not matched 116

Total 582

5.2.4 Experiment 4
In this experiment, we used a matching percentage ratio of algorithmic

metadata up to 50 percent separately, and we added the cue words matching
ratio after that. In other words, we combined the conditions of the second
and the third experiment, and in this way, the results were maximized. We
named this experiment FNC50FC55. Results for this experiment are sum-
marized in Table 5.

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

58

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

Table 5: Truth Table, 50% Metadata Matched and 55% Overall with Cue Words
(FNC50FC55)

Measures Value

Total True 471

True matched 354

False matched 86

True and False Both matched 440

Not matched 117

Total 557

5.3 Calculations
Results are calculated using standard formulas as discussed in this sec-

tion.
5.3.1 Precision
Precision is defined as the ratio of correctly identified instances to the

total predicted positive instances. The equation to calculate precision is given
as follows:

Precision =
 (5)

The worst precision is recorded for experiment 3 (FC55), which is 61 per-
cent, and the best precision is yielded by experiment 4 (FNC50FC55), which
is 81 percent.

5.3.2 Recall
Recall is defined as the ratio of correctly identified instances to all actual

observations in the data; it is also called ‘sensitivity’. Recall is calculated using
the following equation:

Recall = (6)

Experiment 1 (NFNC50) yielded the best recall, which is 77 percent, and
the worst recall is recorded for experiment 3 (FC55), which is 75 percent.

F1 Score
It is the harmonic average of precision and recall, as given below:

F1 Score = (7)

True and False Both Matched (TP+FP)
True matched (TP)

True matched (TP)
Total True (TP+FN)

(Recall + Precision)
2*(Recall * Precision)

59

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

F1 score is more useful than accuracy. The best F1 score is yielded by
experiment 4 (FNC50FC55), which is 78 and the worst F1 score is yielded by
experiment 3 (FC55), which is 67 percent.

Accuracy
Accuracy is the most common measure to check the performance of re-

sults; it is the ratio of correctly identified instances to the total number of
instances, as given below:

				

Accuracy = (8)

The best accuracy is yielded by experiment 4 (FNC50FC55), which is 65
and the worst accuracy is yielded by experiment 1 (NFNC50), which is 56
percent.

Results
Results are shown in Table 6, as in our first experiment we did not use

frequent keywords from algorithmic metadata and cue words for complexity
context and asymptotic function names are completely ignored. Recall was
maximum, which is 77%, but accuracy is low. In other words, in this case
maximum actual links are identified but false results ratio is also high.

In the second experiment we have considered only frequent keywords
for matching weights and we see that results are improved, as precision was
improved from 66% to 78% and accuracy – from 56% to 64%; however, recall
was down from 77% to 76%,

In our third experiment, we have also considered the cue words along
with frequent keywords to evaluate the weights and increase the matching
percentage threshold from 50% to 55%. In this case results were not im-
proved, as we can see in the third row of Table 6.

In our last experiment, we have combined the conditions and thresholds
of the second and third experiment. By doing this we got maximum results,
as precision is improved significantly; F1 score and accuracy is also maxi-
mized in this case. Finally, we have achieved 81% precision, 75% recall, 78%
F1-score and 65% accuracy.

Precision, recall, F-measure and accuracy for linking the algorithm and
complexity line for the different experiments are given in Table 6.

True matched (TP+TN)
Total (TP+FP+FN+TN)

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

60

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

Table 6: Precision, Recall, F-measure and Accuracy for Algorithm and Complexity Line
Linking

Name Method Precision Recall F1 Score Accuracy

NFNC50
50% matched with no
frequent keywords and no
cue words

0.66 0.77 0.71 0.56

FNC50
50% matched with fre-
quent keywords and no
cue words

0.78 0.76 0.77 0.64

FC55 55% matched metadata
and cue words overall 0.61 0.75 0.67 0.62

FNC50FC55 Combination of the second
and the third experiment 0.81 0.75 0.78 0.65

5.4.1 ROC and Precision-Recall Curves
Receiver Operating Characteristic (ROC) curves are shown in Figure 13,

in which we can see that the area under the curve for NFNQ50 is 0.90, which
is the maximum among the other curves because recall for this experiment
was maximum.

Precision-Recall curves are shown in Figure 14. As can be seen that the
areas under curves for all three experiment 2, 3 and 4 are almost same be-
cause recall for these experiments is almost the same, and the area under the
curve for experiment 1 (NFNQ50) is the minimum.

Figure 13: ROC (Receiver Operating Characteristic) Curves

61

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

Figure 14: Precision-Recall Curves

6. Conclusion аnd Future Work

6.1 Concluding Remarks
Linking non-textual document elements (NTDEs), such as charts, di-

agrams, pseudocodes and tables to their relevant paragraph in a scholarly
document is a critical process to improve the relevant results for IR systems
which are mainly focused on this type of search. In this research we have
focused on algorithms and their complexities linking using complexity lines
synopsis.

Scientific publications host a tremendous number of high-quality algo-
rithms developed by professional researchers. In this paper we have linked
the complexity lines and the algorithmic metadata in the same scientific doc-
ument. We have used keywords from algorithmic metadata and a synopsis
generated from five lines before and after the complexity line. Complexity
of algorithms, for both time and space, is the main concern of developers
and researchers. Currently, IR systems for algorithmic search did not directly
consider relevant complexity of algorithms to rank and order the results.

In our research, a frequent keywords set and two cue words sets have
been used to improve our results. Precision, recall, F1-meaure and accura-
cy graphs have been used for thresholds selections. Complexity lines have
been identified by regular expressions with the use of asymptotic notations.
WordNet library has been used for synonyms or related terms. A reference
file has been manually annotated for results and comparisons. An associated
file has been created to save the links between the complexity lines and their
corresponding algorithms. A number of experiments have been performed

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

62

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

with different combinations of frequent keywords, cue words, synonyms or
related terms, and thresholds selections for metadata comparison. We have
improved our results by combining the best performing experiments.

Future Work
In the future we can use similar linking methodology to link different

non-textual document elements, such as figures, tables and charts to their
relevant paragraphs in the same document. By using our methodology, we
can extract and catalogue relevant algorithms and can introduce several ex-
citing applications including discovering new or enhanced algorithms or
analysing different versions of an algorithm. We can also improve algorith-
mic information retrieval systems by using the complexity of algorithms to
index and rank the algorithmic search results. An AI enabled search engine
architecture is used in (Safder, Hassan and Aljohani, 2018) and (Safder and
Hassan, 2018), where an EMD embedded model is used to improve relevant
information retrieval, which is a RCNN based model; we can use our algo-
rithmic metadata and complexity lines context to improve this search engine.

References
Al-Zaidy, R. A. and Giles, C. L. (2017). A Machine Learning Approach for Se-

mantic Structuring of Scientific Charts in Scholarly Documents. In: Proceedings of the
AAAI Conference on Artificial Intelligence, 31(2), 4644–4649. Avajlable at: https://
doi.org/10.1609/aaai.v31i2.19088.

Bajracharya, S., Ossher, J. and Lopes, C. (2009). Sourcerer: An Internet-scale Soft-
ware Repository. In: Proceedings of the 2009 ICSE Workshop on Search-Driven Devel-
opment-Users, Infrastructure, Tools and Evaluation. IEEE Computer Society, 1–4.

Baker, J. B., Sexton, A. P., Sorge, V. and Suzuki, M. (2011). Comparing Ap-
proaches to Mathematical Document Analysis from PDF. In: International Confer-
ence on Document Analysis and Recognition. IEEE, 463–467.

Bhatia, S. and Mitra, P. (2012). Summarizing Figures, Tables, and Algorithms in
Scientific Publications to Augment Search Results. ACM Transactions on Informa-
tion Systems (TOIS), 30(1), 3.

Bhatia, S., Mitra, P. and Giles, C. L. (2010). Finding Algorithms in Scientific Ar-
ticles. In: Proceedings of the 19th International Conference on World Wide Web. NY:
Association for Computing Machinery (ACM), 1061–1062.

Bhatia, S., Tuarob, S., Mitra, P. and Giles, C. L. (2011). An Algorithm Search En-
gine for Software Developers. In: Proceedings of the 3rd International Workshop on
Search-Driven Development: Users, Infrastructure, Tools, and Evaluation. NY: ACM,
13–16.

63

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003). Latent Dirichlet Allocation. Jour-
nal of Machine Learning Research, 3(Jan), 993–1022.

Chen, H.-H., Gou, L., Zhang, X. and Giles, C. L. (2011). Collabseer: A Search
Engine for Collaboration Discovery. In: Proceedings of the 11th Annual International
ACM/IEEE Joint Conference on Digital Libraries. NY: ACM, 231–240.

Chen, P., Xie, H., Maslov, S. and Redner, S. (2007). Finding Scientific Gems with
Google’s PageRank Algorithm. Journal of Informetrics, 1(1), 8–15.

Coüasnon, B. and Lemaitre, A. (2014). Recognition of Tables and Forms. In:
Handbook of Document Image Processing and Recognition. London: Springer, 647–677.

Cormen, T. H. (2013). Algorithms Unlocked. The MIT Press.
Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009). Introduction

to Algorithms. 3rd ed. The MIT Press.
Elminaam, D. S., Abdual-Kader, H. M. and Hadhoud, M. M. (2010). Evaluating the

Performance of Symmetric Encryption Algorithms. IJ Network Security, 10(3), 216–222.
Hearst, M. A., Divoli, A., Guturu, H., Ksikes, A., Nakov, P., Wooldridge, M. A.

and Ye, J. (2007). BioText Search Engine: Beyond Abstract Search. Bioinformatics,
23(16), 2196–2197.

Hirschberg, D. S. (1975). A Linear Space Algorithm for Computing Maximal
Common Subsequences. Communications of the ACM, 18(6), 341–343.

Jung, E., Elmallah, E. S. and Gouda, M. G. (2007). Optimal Dispersal of Certifi-
cate Chains. IEEE Transactions on Parallel and Distributed Systems, 18(4), 474–484.

Keogh, E., Chu, S., Hart, D. and Pazzani, M. (2001). An Online Algorithm for
Segmenting Time Series. In: Proceedings 2001 IEEE International Conference on
Data Mining. IEEE, 289–296.

Khabsa, M. and Giles, C. L. (2014). The Number of Scholarly Documents on
the Public Web. PloS one, 9(5), e93949. Available at: https://doi.org/10.1371/journal.
pone.0093949.

Khabsa, M., Treeratpituk, P. and Giles, C. L. (2012). Ackseer: A Repository and
Search Engine for Automatically Extracted Acknowledgments from Digital Librar-
ies. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries.
NY: ACM, 185–194. .

Khan, S., Liu, X., Shakil, K. A. and Alam, M. (2017). A Survey on Scholarly Data:
From Big Data Perspective. Information Processing & Management, 53(4), 923–944.

Kim, H.-S., Lee, J.-H. and Jeong, Y.-S. (2003). Method for Finding Shortest Path
to Destination in Traffic Network Using Dijkstra Algorithm or Floyd-warshall Al-
gorithm. Google Patents.

Kleinberg, J. and Tardos, É. (2009). Algorithm Design. Boston: Pearson/Addi-
son-Wesley.

Kumar, V., Marathe, M. V., Parthasarathy, S. and Srinivasan, A. (2004). End-to-
end Packet-scheduling in Wireless Ad-hoc Networks. In: Proceedings of the Fifteenth

JC
A

L
 •

 V
O

L
U

M
E

 1
 •

 2
0

2
3

64

Abu Bakar • Raheem Sarwar • Saeed-Ul Hassan • Raheel Nawaz

Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and
Applied Mathematics, 1021–1030.

Lai, S., Xu, L., Liu, K. and Zhao, J. (2015). Recurrent Convolutional Neural Net-
works for Text Classification. In: Proceedings of the AAAI Conference on Artificial
Intelligence, 29(1), 2267–2273. Avajlable at: https://doi.org/10.1609/aaai.v29i1.9513.

Li, H. (2013). Aligning Sequence Reads, Clone Sequences and Assembly Con-
tigs with BWA-MEM. arXiv.org e-Print arXiv:1303.3997. Available at: https://doi.
org/10.48550/arXiv.1303.3997.

Liu, Y., Bai, K., Mitra, P. and Giles, C. L. (2007). Tableseer: Automatic Table
Metadata Extraction and Searching in Digital Libraries. In: Proceedings of the 7th
ACM/IEEE-CS Joint Conference on Digital Libraries. NY: ACM, 91–100.

Marron, M., Stefanovic, D., Hermenegildo, M. and Kapur, D. (2007). Heap Anal-
ysis in the Presence of Collection Libraries. In: Proceedings of the 7th ACM SIG-
PLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering.
NY: ACM, 31–36.

McMillan, C., Grechanik, M., Poshyvanyk, D., Fu, C. and Xie, Q. (2012). Exem-
plar: A Source Code Search Engine for Finding Highly Relevant Applications. IEEE
Transactions on Software Engineering, 38(5), 1069–1087.

Milidiú, R. L., Laber, E. S. and Pessoa, A. A. (1999). A Work-efficient Parallel Al-
gorithm for Constructing Huffman Codes. In: Data Compression Conference, 1999.
Proceedings. DCC’99. IEEE, 277–286.

Nadeem, A. and Javed, M. Y. (2005). A Performance Comparison of Data En-
cryption Algorithms. In: 2005 First International Conference on Information and
Communication Technologies (ICICT). IEEE, 84–89.

Nargesian, F., Zhu, E., Pu, K. Q. and Miller, R. J. (2018). Table Union Search on
Open Data. In: Proceedings of the VLDB Endowment, 11(7), 813–825.

Ratliff, N. D. and Bagnell, J. A. (2007). Kernel Conjugate Gradient for Fast Ker-
nel Machines. In: Proceedings of 20th International Joint Conference on Artificial In-
telligence (IJCAI '07), 1017–1022.

Safder, I. and Hassan, S.-U. (2018). DS4A: Deep Search System for Algorithms
from Full-text Scholarly Big Data. In: International Conference on Data Mining
Workshop (ICDMW), 1308–1315.

Safder, I., Hassan, S.-U. and Aljohani, N. R. (2018). AI Cognition in Searching
for Relevant Knowledge from Scholarly Big Data, Using a Multi-layer Perceptron
and Recurrent Convolutional Neural Network Model. In: Companion of the The
Web Conference 2018 on The Web Conference 2018. International World Wide Web
Conferences Steering Committee, 251–258.

Safder, I., Sarfraz, J., Hassan, S.-U., Ali, M. and Tuarob, S. (2017). Detecting
Target Text Related to Algorithmic Efficiency in Scholarly Big Data using Recurrent
Convolutional Neural Network Model. In: Choemprayong, S., Crestani, F., Cun-
ningham, S., (eds.). Digital Libraries: Data, Information, and Knowledge for Digital
Lives. ICADL 2017. Cham: Springer, 30–40.

65

EXTRACTING ALGORITHMIC COMPLEXITY IN SCIENTIFIC LITERATURE...

Siegel, N., Horvitz, Z., Levin, R., Divvala, S. and Farhadi, A. (2016). FigureSeer:
Parsing Result-figures in Research Papers. In: Leibe, B., Matas, J., Sebe, N., Welling,
M., (eds.). Computer Vision – ECCV 2016, 9911, 664–680. Available at: https://link.
springer.com/chapter/10.1007/978-3-319-46478-7_41.

Siegel, N., Lourie, N., Power, R. and Ammar, W. (2018). Extracting Scientific Fig-
ures with Distantly Supervised Neural Networks. In: Proceedings of the 18th ACM/
IEEE on Joint Conference on Digital Libraries. NY: ACM, 223–232.

Stewart, J. G. (2009). Genre Oriented Summarization. [PhD diss.]. Carnegie
Mellon University, Language Technologies Institute, School of Computer Science.

Ochieng, P. J., Djatna, T. and Kusuma, W. A. (2015). Tandem Repeats Analysis
in DNA Sequences Based on Improved Burrows-Wheeler Transform. In: 2015 Inter-
national Conference on Advanced Computer Science and Information Systems (ICAC-
SIS). IEEE, 117–122.

Tuarob, S., Bhatia, S., Mitra, P. and Giles, C. L. (2013). Automatic Detection of
Pseudocodes in Scholarly Documents Using Machine Learning. In: 12th International
Conference on Document Analysis and Recognition (ICDAR). IEEE, 738–742.

Tuarob, S., Bhatia, S., Mitra, P. and Giles, C. L. (2016). AlgorithmSeer: A System
for Extracting and Searching for Algorithms in Scholarly Big Data. IEEE Transac-
tions on Big Data, 2(1), 3–17.

Tuarob, S., Mitra, P. and Giles, C. L. (2015). A Hybrid Approach to Discover
Semantic Hierarchical Sections in Scholarly Documents. In: 13th International Con-
ference on Document Analysis and Recognition (ICDAR). IEEE, 1081–1085.

Tyagi, N. and Sharma, S. (2012). Weighted Page Rank Algorithm Based on Num-
ber of Visits of Links of Web Page. International Journal of Soft Computing and En-
gineering (IJSCE), 2(3), 2231–2307. Available at: https://www.ijsce.org/wp-content/
uploads/papers/v2i3/C0796062312.pdf.

Wang, J. (2009). Mean-variance Analysis: A New Document Ranking Theory in
Information Retrieval. European Conference on Information Retrieval. Springer, 4–16.

Wise, M. J. (1995). Neweyes: A System for Comparing Biological Sequences Us-
ing the Running Karp-Rabin Greedy String-Tiling Algorithm. In: Proceedings. Inter-
national Conference on Intelligent Systems for Molecular Biology, 3, 393–401.

Wu, J., Williams, K. M., Chen, H.-H., Khabsa, M., Caragea, C., Tuarob, S., Oror-
bia, А., D Jordan, D. and Giles, C. L. (2015). Citeseerx: AI in a Digital Library Search
Engine. AI Magazine, 36(3), 35–48.

Yang, Y., Yu, P. and Gan, Y. (2011). Experimental Study on the Five Sort Algo-
rithms. In: 2011 Second International Conference on Mechanic Automation and Con-
trol Engineering (MACE). IEEE, 1314–1317.

Zanibbi, R. and Blostein, D. (2012). Recognition and Retrieval of Mathematical
Expressions. International Journal on Document Analysis and Recognition (IJDAR),
15(4), 331–357.

